Demand-shaping mechanisms are a key component of modern energy management systems, although not unproblematic. The degree of social acceptance of interference with demand or generation and the ease of integration of various types of non-critical loads depends on the method of their implementation. In addition, the critical load pool typically includes devices with different response times. The energy management systems currently in use often cannot meet user expectations. Especially when considering other vital aspects, such as energy market spread, storage wear, or connection to the utility grid and neighbouring microgrids. The authors adopted an approach of unifying demand side management and response in the form of virtual energy storage. Said store allows for the accommodation of loads operating under differing scheduling horizons. Such a new concept allows management not only in terms of quantity but also in terms of time. The storage is the focal point of a comprehensive energy management system based on switched model predictive control. The receding horizon algorithm relies on a non-stationary hybrid microgrid model. The study compares the operating costs of microgrids with virtual storage, allowing only demand postponement, preponement or bidirectional operation. The energy management system is also examined for sensitivity to changes in the weight matrices of the cost function, horizon length and forecast inaccuracy. Introducing virtual energy storage reduces microgrid operating costs by up to 16%. The decrease in control performance is proportional to the prediction accuracy, and the sensitivity allows for customisation.
Read full abstract