The objective of this epigenetic study was to investigate the cellular proportions based on DNA methylation signatures and pathways of differentially methylated genes in labial salivary gland (LSG) tissues of individuals with Sjögren's syndrome (SS). Two methylation array datasets from the Gene Expression Omnibus repository (GSE166373 and GSE110007) were utilized, consisting of 159 LSG tissues from 77 SS cases and 82 non-SS controls. The raw data underwent analysis using the Chip Analysis Methylation Pipeline (ChAMP) in R statistical tool, which identified differential methylation probes and regions. The EpiDISH and minfi packages in R were employed to identify proportions of epithelial cells, fibroblasts, and immune cells, as well as immune cell subsets. The results showed that proportions of immune cells were increased, while proportions of epithelial cells and fibroblasts were significantly decreased in the LSG of individuals with SS compared to non-SS controls. Specifically, proportions of B-cells and CD8 T-cells were increased, while CD4 T-cells, Treg, monocytes, and neutrophils were decreased in the LSG of individuals with SS. Pathway analysis indicated that genes involved in immune responses to Epstein-Barr virus infection were significantly hypomethylated in SS, and gene set enrichment analysis highlighted the hypomethylation of genes involved in the somatic recombination of immune receptors in SS. Additionally, Disease Ontology analysis showed enriched pathways related to multiple myeloma, arthritis, and the human immunodeficiency virus. The study also revealed significant hypomethylation of the WAS gene on chromosome X in LSG tissues of individuals with SS. Overall, the findings suggest an increased proportion of B-cells and genes related to B-cell function, as well as hypomethylation of genes involved in immune responses and immune receptor recombination, in LSG tissues of individuals with SS compared to non-SS controls.
Read full abstract