Nature produces some of the most striking optical effects through the combination of structural and chemical principles to give rise to a wide range of colors. However, creating non-spectral colors that extend beyond the color spectrum is a challenging task, as it requires meeting the requirements of both structural and pigmentary coloration. In this study, we investigate the magenta non-spectral color found in the scales of the ventral spots of the Lyropteryx apollonia butterfly. By employing correlated optical and electron microscopy, as well as pigment extraction techniques, we reveal how this color arises from the co-modulation of pigmentary and structural coloration. Specifically, the angle-dependent blue coloration results from the interference of visible light with chitin-based nanostructures, while the diffused red coloration is generated by an ommochrome pigment. The ability to produce such highly conspicuous non-spectral colors provides insights for the development of hierarchical structures with precise control over their optical response. These structures can be used to create hierarchically-arranged systems with a broadened color palette.