We investigated the benthic foraminiferal faunal and stable carbon and oxygen isotopic composition of a 15-cm push core (NA075-092b) obtained on a Telepresence-Enabled cruise to the Southeast Seep on Kimki Ridge offshore southern California. The seep core was taken at a depth of 973 m in the vicinity of a Beggiatoa bacterial mat and vesicomyid clams (Calyptogena) and compared to previously published data of living assemblages from ~ 714 m, four reference cores obtained at ~ 1030 m, and another one at 739 m. All of the reference sites are also from the Inner Continental Borderland but with no evidence of methane seepage.No endemic species were found at the seep site and most of the taxa recovered there have been reported previously from other seep or low oxygen environments. Q- and R-mode cluster analyses clearly illustrated differences in the faunal assemblages of the seep and non-seep sites. The living assemblage at Southeast Seep was characterized by abundant Takayanagia delicata, Cassidulina translucens, and Spiroplectammina biformis, whereas the non-seep San Pedro Basin reference assemblage was comprised primarily of Chilostomella oolina and Globobulimina pacifica. Density and species richness were lower at the seep site compared to the non-seep site, reflecting the harsher living conditions there. The dead assemblage at the seep site was dominated by Gyroidina turgida compared to Cassidulina translucens at the ~ 1030 m non-seep site and Cassidulina translucens, Pseudoparrella pacifica, and Takayanagia delicata at the 739 m non-seep site. Density was three times lower at Southeast Seep than at the non-seep sites of comparable water depth but species richness was ~ 30% higher. Stable carbon isotopic values were considerably depleted in the seep samples compared to the non-seep samples, with a progression from lightest to heaviest average δ13C values evident at the seep site reflecting microhabitat preference and vital effect: the deep infaunal species of Globobulimina, the shallow infaunal species Uvigerina peregrina, the epifaunal species Cibicidoides wuellerstorfi, and the shallow infaunal but aragonite-shelled species Hoeglundina elegans. The δ13C values downcore among each benthic species indicates ongoing fluid seepage through at least the last 3800 cal yr B.P. at Southeast Seep. Besides the continual local seepage, evidence from δ13C values of planktic foraminifera in the seep core suggest two pulses of methane (at 3000 and 3700 cal yr B.P.) were released that were large enough to influence much of the water column. Paired benthic and planktic foraminiferal stable oxygen isotope records provide evidence that there were no paleoenvironmental changes such as increased bottom-water temperature or changes in oxygen isotopic composition of bottom and pore waters during this 3800-year record to induce the methane releases. Instead, Southeast Seep appears to be the result of local faulting providing pathways for fluid to flow to the seafloor at a fault stepover or transpressional bend in the regional strike-slip system.