Although Maxwell theory is O(3,1)-covariant, electrodynamics only transforms invariantly between Lorentz frames for special forms of the field, and the generator of Lorentz transformations is not generally conserved. Berard, Grandati, Lages, and Mohrbach have studied the O(3) subgroup, for which they found an extension of the rotation generator that satisfies the canonical angular momentum algebra in the presence of certain Maxwell fields, and is conserved by the classical motion. The extended generator depends on the field strength, but not the potential, and so is manifestly gauge invariant. The conditions imposed on the Maxwell field by the algebra lead to a Dirac monopole solution. In this paper, we study the generalization of the Berard, Grandati, Lages and Mohrbach construction to the full Lorentz group in N dimensions. The requirements can be maximally satisfied in a three-dimensional subspace of the full Minkowski space; this subspace can be chosen to describe either an O(3)-invariant space sector, or an O(2,1)-invariant restriction of spacetime. The field solution reduces to the Dirac monopole found in the nonrelativistic case when the O(3)-invariant subspace is selected. When an O(2,1)-invariant subspace is chosen, the field strength can be associated with a Coulomb-like potential of the type A μ(x) = n μ/ρ, where ρ = (x μ x μ)1/2, similar to that used by Horwitz and Arshansky to obtain a covariant generalization of the hydrogen-like bound state. In the presence of these fields, which are determined entirely by symmetry considerations, without reference to a source equation, the extended generator is conserved under classical relativistic system evolution.