This study intends to show the potential application of a non-recyclable plastic waste towards the development of electrically conductive nanocomposites. Herein, the conductive nanofiller and binding matrix are carbon nanotubes (CNT) and polystyrene (PS), respectively, and the waste material is a plastic foam consisting of mainly vulcanized nitrile butadiene rubber and polyvinyl chloride (PVC). Two nanocomposite systems, i.e., PS/Waste/CNT and PS/CNT, with different compositions were melt-blended in a mixer and characterized for electrical properties. Higher electrical conduction and improved electromagnetic interference shielding performance in PS/Waste/CNT system indicated better conductive network of CNTs. For instance, at 1.0 wt.% CNT loading, the PS/Waste/CNT nanocomposites with the plastic waste content of 30 and 50 wt.% conducted electricity 3 and 4 orders of magnitude higher than the PS/CNT nanocomposite, respectively. More importantly, incorporation of the plastic waste (50 wt.%) reduced the electrical percolation threshold by 30% in comparison with the PS/CNT nanocomposite. The enhanced network of CNTs in PS/Waste/CNT samples was attributed to double percolation morphology, evidenced by optical images and rheological tests, caused by the excluded volume effect of the plastic waste. Indeed, due to its high content of vulcanized rubber, the plastic waste did not melt during the blending process. As a result, CNTs concentrated in the PS phase, forming a denser interconnected network in PS/Waste/CNT samples.