Nonreciprocal transmission, resulting from the breaking of Lorentz reciprocity, plays a pivotal role in nonreciprocal communication systems by enabling asymmetric forward and backward propagations. Metasurfaces endowed with nonreciprocity represent a compact and facile platform for manipulating electromagnetic waves in an unprecedented manner. However, most passive metasurfaces that achieve nonreciprocal transmissions are polarization dependent. While incorporation of active elements or nonlinear materials can achieve polarization-independent nonreciprocal metasurfaces, the complicated configurations limit their practical applications. To address this issue, we propose and demonstrate a passive and linear metasurface that combines magneto-optical and chiral effects, enabling polarization-independent isolation. The designed metasurface achieves a transmittance of up to 80%, with a high contrast between forward and backward propagations. Our work introduces a novel mechanism for nonreciprocal transmission and lays the foundation for the development of compact, polarization-insensitive nonreciprocal devices.
Read full abstract