Control of ventricular assist devices (VADs) for native heart preservation should be attempted, and it could be one strategy for dealing with the shortage of donors in the future. In the application of a nonpulsatile blood pump for ventricular assistance from its apex to the aorta, the bypass flow and hence motor current of the pumps change in response to the ventricular pressure change. Utilizing these intrinsic characteristics of the continuous flow pumps, this study investigated whether or not motor current could be used as an index for continuous monitoring of native cardiac function. In Study 1, a centrifugal blood pump (CFP) VAD was installed between the apex and descending aorta of a mock circulatory loop. In this model, a baseline with a preload of 10 mm Hg, afterload of 40 mm Hg, and left ventricular (LV) systolic pressure of 40 mm Hg was used. The pump rpm were fixed at 1,300, 1,500, and 1,700, and LV systolic pressure was increased up to 140 mm Hg by a step of 20 mm Hg while observing the changes in LV pressure, motor current, pump flow, and aortic pressure. In Study 2, in vivo experiments were performed using 5 sheep. A left heart bypass model was created using a centrifugal pump from the ventricular apex to the descending aorta. The LV pressure was varied through administration of dopamine while observing the changes in LV pressure, pump flow, motor current, and aortic pressure at 1,500 and 1,700 rpm. An excellent correlation was observed both in vitro and in vivo studies in the relationship between motor current and LV pressure. In Study 1, the correlation coefficients were 0.77, 0.92, and 0.99 for 1,300, 1,500, and 1,700 rpm, respectively. In Study 2, they were 0.90 (Animal 1), 0.82 (Animal 2), 0.89 (Animal 3), 0.93 (Animal 4), and 0.70 (Animal 5) respectively for 1,500 rpm, and 0.94 (Animal 2), 0.85 (Animal 3), 0.94 (Animal 4), and 0.89 (Animal 5) respectively, for 1,700 rpm. The relationship between motor current and pump flow and LV pressure showed an unstable correlation in an in vivo study. These results suggest that motor current amplitude monitoring could be useful as an index for the control of VADs for native heart preservation.