NADP-dependent non-phosphorylating D-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.9), previously described in higher plants, has been now found to be present in eukaryotic green algae, but in neither cyanobacteria nor non-photosynthetic microorganisms. The enzyme from the unicellular green alga Chlamydomonas reinhardtii, strain 6145c, has been purified to apparent electrophoretic homogeneity. The non-phosphorylating enzyme was effectively separated from the NADP-dependent phosphorylating D-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) dye-ligand chromatography on Reactive Red-120 agarose. The purified enzyme exhibited an optimum pH in the 8.5–9.0 range and a specific activity of approx. 8 μmol·(mg protein) −1·min −1. The native protein was characterized as a homotetramer with a molecular weight of 190 000, a Stokes radius of 5.2 mn, and an isoelectric point of 6.9. From kinetic studies, K m-values of 9.8 and 51 μM were calculated for NADP and D-glyceraldehyde 3-phosphate, respectively, an absolute specificity for both substrates being observed. L-Glyceraldehyde 3-phosphate was a potent non-competitive inhibior ( K i, 48 μM). The reaction products NADPH and D-3-phosphoglycerate inhibited enzyme activity in a competitive manner with respect to NADP ( K i, 78 μM) and D-glyceraldehyde 3-phosphate ( K i, 1.2 mM), respectively. Thermal inactivation occurred above 45°C and was effectively prevented by either substrate. The presence of essential vicinal thiol groups is suggested by the inactivation produced by diamide, with D-glyceraldehyde 3-phosphate, but not NADP, behaving as a protective agent. The enzyme's possible physiological role in photosynthetic metabolism is discussed briefly.