Three-dimensional (3D) linear stability properties are considered for steady and unsteady 2D or 3D boundary layers with significant non-parallelism present. Two main examples of such non-parallel flows whose stability is of interest are, firstly, steady motion, over roughness elements, in cross flow, or in large-scale separation and, secondly, unsteady 2D Tollmien-Schlichting (TS) motion, with its associated question of secondary instabilities. A high-frequency stability analysis is presented here. It is found that, for 2DTS or steady boundary layers, there is a swing in the direction of maximum TS spatial growth rate, from 0° for parallel flow towards 64.68° away from the free-stream direction, as the nonparallel flow effects increase. These effects then depend principally on, and indeed are proportional to, the local slope of the boundary-layer displacement. Cross flow can also have a profound impact on TS instabilities. Further implications for higher-amplitude and/or fasterscale disturbances, their secondary instability, and nonlinear interactions, are also discussed.
Read full abstract