As humans age, they experience deformity and a decrease in their bone strength, such brittleness in the bones ultimately lead to bone fracture. Magnetic field exposure combined with physical exercise may be useful in mitigating age-related bone loss by improving the canalicular fluid motion within the bone’s lacuno-canalicular system (LCS). Nevertheless, an adequate amount of fluid induced shear stress is necessary for the bone mechano-transduction and solute transport in the case of brittle bone diseases. The underlying mechanisms of how magnetic fields, in combination to mechanical loading, affects the canalicular fluid motion still need to be explored. Accordingly, this study aims to develop a computer model to investigate the role of magnetic fields on loading-induced canalicular fluid flow in a curvy lacunar canalicular space with irregular osteocyte cell processes and walls. Moreover, this study considers canalicular fluid as non-Newtonian fluid, i.e., Jeffery fluid. In addition, a machine learning model was further employed for the estimation of parameters which significantly influence the canalicular fluid flow in response to loading and magnetic field. The results show that static magnetic field modulates the loading-induced canalicular fluid flow. Additionally, present study accelerates the fluid induced wall shear stress in case of osteoporosis.
Read full abstract