Previous article Next article On a Theorem of JansonV. G. MikhailovV. G. Mikhailovhttps://doi.org/10.1137/1136018PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] Svante Janson, Normal convergence by higher semi-invariants with applications to sums of dependent random variables and random graphs, Ann. Probab., 16 (1988), 305–312 89a:60062 0639.60029 CrossrefGoogle Scholar[2] M. V. Petrovskaya and , A. M. Leontovich, The central limit theorem for a sequence of random variables with a slowly growing number of dependencies, Theory Probab. Appl., 27 (1982), 815–825 10.1137/1127089 0559.60069 LinkGoogle Scholar[3] A. M. Leontovich, On a condition for slowly growing number of dependencies, Theory Probab. Appl., 30 (1985), 196–200 10.1137/1130026 0657.60015 LinkGoogle Scholar[4] V. G. Mikhailov, On the asymptotic normality of U-statistics with non-negative kernels, Proc. of the Steklov Math. Inst., 1988, 105–113, issue 4 Google Scholar[5] V. P. Leonov and , A. N. Shiryaev, On a method of semi-invariants, Theor. Probability Appl., 4 (1959), 319–329 23:A673 0087.33701 LinkGoogle Scholar Previous article Next article FiguresRelatedReferencesCited byDetails Об условиях асимптотической нормальности числа повторений в стационарной случайной последовательности28 August 2021 | Дискретная математика, Vol. 33, No. 3 Cross Ref Central limit theorems for patterns in multiset permutations and set partitionsThe Annals of Applied Probability, Vol. 30, No. 1 Cross Ref Weighted dependency graphsElectronic Journal of Probability, Vol. 23, No. none Cross Ref Dependency graphs and mod-Gaussian convergence7 December 2016 Cross Ref Asymptotic normality of the number of values of m-dependent random variables which occur a given number of timesDiscrete Mathematics and Applications, Vol. 21, No. 1 Cross Ref Asymptotic normality of the number of absent noncontinuous chains of outcomes of independent trialsDiscrete Mathematics and Applications, Vol. 19, No. 3 Cross Ref A Refinement of the Central Limit Theorem for Sums of Independent Random IndicatorsA. Yu. Volkova12 July 2006 | Theory of Probability & Its Applications, Vol. 40, No. 4AbstractPDF (442 KB) Volume 36, Issue 1| 1992Theory of Probability & Its Applications History Submitted:30 January 1989Published online:17 July 2006 InformationCopyright © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1136018Article page range:pp. 173-176ISSN (print):0040-585XISSN (online):1095-7219Publisher:Society for Industrial and Applied Mathematics
Read full abstract