Insect pollination is fundamental for natural ecosystems and agricultural crops. The bumblebee species Bombus terrestris has become a popular choice for commercial crop pollination worldwide due to its effectiveness and ease of mass rearing. Bumblebee colonies are mass produced for the pollination of more than 20 crops and imported into over 50 countries including countries outside their native ranges, and the risk of invasion by commercial non-native bumblebees is considered an emerging issue for global conservation and biological diversity. Here, we use genome-wide data from seven wild populations close to and far from farms using commercial colonies, as well as commercial populations, to investigate the implications of utilizing commercial bumblebee subspecies in the UK. We find evidence for generally low levels of introgression between commercial and wild bees, with higher admixture proportions in the bees occurring close to farms. We identify genomic regions putatively involved in local and global adaptation, and genes in locally adaptive regions were found to be enriched for functions related to taste receptor activity, oxidoreductase activity, fatty acid and lipid biosynthetic processes. Despite more than 30 years of bumblebee colony importation into the UK, we observe low impact on the genetic integrity of local B. terrestris populations, but we highlight that even limited introgression might negatively affect locally adapted populations.