본 논문에서는 4차원 시공간 (4D-ST, [x,y,z,t]) 특징을 이용하여 행동 방향을 인식하는 방법을 제안한다. 이를 위해 4차원 시공간 특징점 (4D-STIPs, [x,y,z,t])을 제안하였고, 이는 여러 다른 뷰에서 촬영한 이미지들로부터 복원된 3차원 공간 (3D-S, [x,y,z]) 볼륨으로부터 계산된다. 3차원 공간정보를 갖고 있는 3D-S 볼륨과 4D-STIPs는 2차원 공간 (2D-S, [x,y]) 뷰로 사영을 하여 임의의 2D-S 뷰에서의 특징을 생성해 낼 수 있다. 이 때, 사영 방향을 결정 할 수 있으므로, 학습 시 방향에 대한 정보를 포함하여 행동 방향을 인식 할 수 있다. 행동 방향을 인식하는 과정은 두 단계로 나눌 수 있는데, 우선 어떤 행동인지를 인식하고 그 후, 방향 정보를 이용하여 최종적으로 행동 방향을 인식한다. 행동 인식과 방향 인식을 위해, 사영된 3D-S 볼륨과 4D-STIPs은 각각 움직이는 부분과 움직이지 않는 부분에 대한 정보를 담고 있는 motion history images (MHIs)와 non-motion history images (NMHIs)로 구성된다. 이러한 특징들은 행동 인식을 위해, 방향 정보에 상관없이 같은 행동이면 같은 클래스로 분류되어 support vector data description (SVDD) 분류기로 학습되고, support vector domain density description (SVDDD)을 이용하여 인식된다. 인식된 행동에서 최종적으로 방향을 인식하기 위해 각 행동을 방향 클래스로 분류하여 SVDD 분류기로 학습하고 SVDDD로 인식한다. 제안된 방법의 성능을 보이기 위해서 INRIA Xmas Motion Acquisition Sequences (IXMAS) 데이터셋에서 제공하는 3D-S 볼륨을 사용하여 학습을 하고, 행동 방향 인식 실험이 가능한 SNU 데이터셋을 구축하여 인식 실험을 하였다. In this paper, we propose a method to recognize the action direction of human by developing 4D space-time (4D-ST, [x,y,z,t]) features. For this, we propose 4D space-time interest points (4D-STIPs, [x,y,z,t]) which are extracted using 3D space (3D-S, [x,y,z]) volumes reconstructed from images of a finite number of different views. Since the proposed features are constructed using volumetric information, the features for arbitrary 2D space (2D-S, [x,y]) viewpoint can be generated by projecting the 3D-S volumes and 4D-STIPs on corresponding image planes in training step. We can recognize the directions of actors in the test video since our training sets, which are projections of 3D-S volumes and 4D-STIPs to various image planes, contain the direction information. The process for recognizing action direction is divided into two steps, firstly we recognize the class of actions and then recognize the action direction using direction information. For the action and direction of action recognition, with the projected 3D-S volumes and 4D-STIPs we construct motion history images (MHIs) and non-motion history images (NMHIs) which encode the moving and non-moving parts of an action respectively. For the action recognition, features are trained by support vector data description (SVDD) according to the action class and recognized by support vector domain density description (SVDDD). For the action direction recognition after recognizing actions, each actions are trained using SVDD according to the direction class and then recognized by SVDDD. In experiments, we train the models using 3D-S volumes from INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset and recognize action direction by constructing a new SNU dataset made for evaluating the action direction recognition.