Effluents of textile, paper, and related industries contain significant amounts of synthetic dyes which has serious environmental and health implications. Remediation of dyes through physical and chemical techniques has specific limitations. Augmented biological decontamination strategies 'microbial remediation' may involve ring-opening of dye molecules besides the reduction of constituent metal ions. Both bacterial and fungal genera are known to exhibit metabolic versatility which can be harnessed for effective bio-removal of the toxic dye contaminants. Ascomycetous/basidiomycetes fungi can effectively decontaminate azo dyes through laccase/peroxidase enzyme-mediated catalysis. The extent, efficacy, and range of fungal dye decontamination can be enhanced by the conjugated application of nanomaterials, including nanoparticles (NPs) and their composites. Fungal cell-enabled NP synthesis- 'myco-farmed NPs', is a low-cost strategy for scaled-up fabrication of a variety of metal, metal oxide, non-metal oxide NPs through oxidation/reduction of dissolved ions/molecules by extracellular biomolecules. Augmented and rapid decontamination of azo dyes at high concentrations can be achieved by the use of myco-farmed NPs, NPs adsorbed fungal biomass, and nano-immobilized fungi-derived bio-catalytical agents. This manuscript will explore the opportunities and benefits of mycoremediation and application of fungus-NP bionanoconjugate to remediate dye pollutants in wastewaters and land contaminated with the effluent of textile industries.