We propose an approach to measuring non-Markovianity of an open two-level system from quantum coherence perspective including l1 norm of coherence and quantum relative entropy of coherence, and derive corresponding non-Markovian conditions. Further, as a particular application, non-Markovian conditions of an open two-level system undergoing phase damping channel, random unitary channel and amplitude damping channel, respectively are investigated. Specifically speaking, for the three channels we obtain non-Markovian conditions based on l1 norm of coherence at any initial state of system, and find that non-Markovian conditions are the same as the conditions of other measurements, i.e., information back-flow, divisibility and quantum mutual entropy for the phase damping channel and amplitude damping channel, but non-Markovian conditions new and different from the conditions of other measurements for random unitary channel. On the other hand, for phase damping channel we obtain non-Markovian conditions based on quantum relative entropy of coherence at any initial state of system, which are the same as the conditions of other measures, i.e., information back-flow, divisibility and quantum mutual entropy. However, for the random unitary channel and amplitude damping channel we obtain non-Markovian conditions at maximally coherent state of system.