We consider a stochastic model for evolution of group-structured populations in which interactions between group members correspond to the Prisoner's Dilemma or the Hawk-Dove game. Selection operates at two organization levels: individuals compete with peer group members based on individual payoff, while groups also compete with other groups based on average payoff of group members. In the Prisoner's Dilemma, this creates a tension between the two levels of selection, as defectors are favored at the individual level, whereas groups with at least some cooperators outperform groups of defectors at the between-group level. In the limit of infinite group size and infinite number of groups, we derive a non-local PDE that describes the probability distribution of group compositions in the population. For special families of payoff matrices, we characterize the long-time behavior of solutions of our equation, finding a threshold intensity of between-group selection required to sustain density steady states and the survival of cooperation. When all-cooperator groups are most fit, the average and most abundant group compositions at steady state range from featuring all-defector groups when individual-level selection dominates to featuring all-cooperator groups when group-level selection dominates. When the most fit groups have a mix of cooperators and defectors, then the average and most abundant group compositions always feature a smaller fraction of cooperators than required for the optimal mix, even in the limit where group-level selection is infinitely stronger than individual-level selection. In such cases, the conflict between the two levels of selection cannot be decoupled, and cooperation cannot be sustained at all in the case where between-group competition favors an even mix of cooperators and defectors.
Read full abstract