Fractional Brownian motion has been widely used to model a number of phenomena in diverse fields of science and engineering. In this article, we investigate the existence, uniqueness and stability of mild solutions for a class of second-order nonautonomous neutral stochastic evolution equations with infinite delay driven by fractional Brownian motion (fBm) with Hurst parameter H ∈ (1/2, 1) in Hilbert spaces. More precisely, using semigroup theory and successive approximation approach, we establish a set of sufficient conditions for obtaining the required result under the assumption that coefficients satisfy non-Lipschitz condition with Lipschitz condition being considered as a special case. Further, the result is deduced to study the second-order autonomous neutral stochastic equations with fBm. The results generalize and improve some known results. Finally, as an application, stochastic wave equation with infinite delay driven by fractional Brownian motion is provided to illustrate the obtained theory.
Read full abstract