The VENoL analytical model was developed to reproduce the nonlinear viscoelastic behaviour of asphalt concrete in dynamic analysis. In this paper, it is integrated as a contact law in a 2D model using the Discrete Element Method. The asphalt concrete is modelled on a macroscopic scale. The VENoL model is applied in the numerical code without any recalibration of its analytical parameters. Particular attention is paid to modelling variations in the Poisson's ratio as a function of test conditions. This integration is checked by comparing the results of the numerical model with those extracted from the literature for complex modulus tests in direct tension-compression. Despite the use of a macroscopic scale, it appears that the model can reproduce porosity effects through the mechanisms of DEM. Using the same set of parameters, two-point bending tests are also conducted to ensure their compliance in the characterisation of bituminous mixes.
Read full abstract