AbstractAlthough periodic photonic structures, especially associated with nonlinearity, play a prominent role in optics nowadays, effective detection of their nonlinearity still remains a critical challenge. Here, an approach is proposed to detect the nonlinearity of photonic lattices in a direct way. By properly launching structured beams, namely Airy beams, into the lattices, the nonlinear response function of the discrete system can be directly obtained in the nonlinearly‐shaped beam profiles. To be specific, a single Airy beam is utilized to map self‐defocusing nonlinearity, while self‐focusing nonlinearity, which is hard to visualize in the bulk case, is readily discerned by employing double Airy beams in photonic structures. The proposed method is validated numerically and experimentally by detecting different types of nonlinearities of photonic lattices fabricated in a nonlinear crystal. These findings introduce a promising route for characterizing the nonlinear response of optical structures, thereby broadening the scope of nonlinear measurement and is expected to be extended into other periodic photonic structures.