The purpose of this paper is to study the solvability of the quaternary continuous classical boundary optimal control vector problem dominated by quaternary nonlinear parabolic boundary value problem with state constraints. The existence theorem for a quaternary continuous classical boundary optimal control vector with equality and inequality state constraints is stated and demonstrated under suitable assumptions. The mathematical formulation of the quaternary adjoint eqs. associated with the quaternary nonlinear parabolic boundary value problem with state constraints is discovered. The Fréchet derivative of the cost function and the constraints functions are derived. The necessary and sufficient theorems (conditions) for optimality of the quaternary continuous classical boundary optimal control vector problem are stated and demonstrated under suitable assumptions.