This paper proposes a field calibration method for an accelerometer without the need of having any external devices for calibration. In the proposed calibration method, generalized nonlinear least-square (GNLS) is used to estimate deterministic errors. A novel sensor’s data collection procedure is developed to collect data of an accelerometer along all three axes and all possible orientations where the expectation of influence of all possible errors is very high. The proposed calibration method is verified by applying it to two different accelerometers. The proposed calibration method achieved an accurate estimation of calibration parameters. The results of the proposed GNLS based calibration method are compared with two other commonly used algorithms, such as Levenberg–Marquardt (LM) and Gauss–Newton (GN). Simulation and experimental results show that the proposed GNLS-based calibration method is slightly more accurate than the LM and GN. The GNLS convergence rate for estimating the calibration parameters is also faster than the LM and GN.
Read full abstract