BackgroundAccording to recent research, treating heart failure (HF) by inhibiting G protein-coupled receptor kinase 2 (GRK2) to improve myocardial energy metabolism has been identified as a potential approach. Cinnamaldehyde (CIN), a phenylpropyl aldehyde compound, has been demonstrated to exhibit beneficial effects in cardiovascular diseases. However, whether CIN inhibits GRK2 to ameliorate myocardial energy metabolism in HF is still unclear. PurposeThis study examines the effects of CIN on GRK2 and myocardial energy metabolism to elucidate its underlying mechanism to treat HF. MethodsThe isoproterenol (ISO) induced HF model in vivo and in vitro were constructed using Sprague-Dawley (SD) rats and primary neonatal rat cardiomyocytes (NRCMs). Based on this, the effects of CIN on myocardial energy metabolism and GRK2 were investigated. Additionally, validation experiments were conducted after interfering and over-expressing GRK2 in ISO-induced NRCMs to verify the regulatory effect of CIN on GRK2. Furthermore, binding capacity between GRK2 and CIN was explored by Cellular Thermal Shift Assay (CETSA) and Microscale Thermophoresis (MST). ResultsIn vivo and in vitro, CIN significantly improved HF as demonstrated by reversing abnormal changes in myocardial injury markers, inhibiting myocardial hypertrophy and decreasing myocardial fibrosis. Additionally, CIN promoted myocardial fatty acid metabolism to ameliorate myocardial energy metabolism disorder by activating AMPK/PGC-1α signaling pathway. Moreover, CIN reversed the inhibition of myocardial fatty acid metabolism and AMPK/PGC-1α signaling pathway by GRK2 over-expression in ISO-induced NRCMs. Meanwhile, CIN had no better impact on the stimulation of cardiac fatty acid metabolism and the AMPK/PGC-1α signaling pathway in ISO-induced NRCMs when GRK2 was disrupted. Noticeably, CETSA and MST confirmed that CIN binds to GRK2 directly. The binding of CIN and GRK2 promoted the ubiquitination degradation of GRK2 mediated by murine double mimute 2. ConclusionThis study demonstrates that CIN exerts a protective intervention in HF by targeting GRK2 and promoting its ubiquitination degradation to activate AMPK/PGC-1α signaling pathway, ultimately improving myocardial fatty acid metabolism.