In contacts, such as cams, non-involute gears and shaft seals, where the direction of entrainment reverses during the operating cycle, the minimum film thickness is typically found just after the reversal. This paper shows that this minimum film thickness is determined by the rate of change of the entraining velocity and by the fluid and surface properties. For line contacts, four regimes of lubrication are found—as for the steady-state situation—and expressions for the film thickness in each regime are developed. This enables an outline design chart for the minimum film thickness to be constructed. It is shown that this information, together with the steady-state predictions is sufficient to determine the variation of film thickness with time in most situations where load, radius of curvature, and entraining velocity vary.