BackgroundQuantification of cell-free fetal DNA by methylation-based DNA discrimination has been used in non-invasive prenatal testing of fetal chromosomal aneuploidy. The maspin (Serpin peptidase inhibitor, clade B (ovalbumin), member 5; SERPINB5) gene, located on chromosome 18q21.33, is hypomethylated in the placenta and completely methylated in maternal blood cells. The objective of this study was to evaluate the accuracy of non-invasive detection of fetal trisomy 18 using the unmethylated-maspin (U-maspin) gene as a cell-free fetal DNA marker and the methylated-maspin (M-maspin) gene as a cell-free total DNA marker in the first trimester of pregnancy.Methodology/Principal FindingsA nested case-control study was conducted using maternal plasma collected from 66 pregnant women, 11 carrying fetuses with trisomy 18 and 55 carrying normal fetuses. Median U-maspin concentrations were significantly elevated in women with trisomy 18 fetuses compared with controls (27.2 vs. 6.7 copies/mL; P<0.001). Median M-maspin concentrations were also significantly higher in women with trisomy 18 fetuses than in controls (96.9 vs. 19.5 copies/mL, P<0.001). The specificities of U-maspin and M-maspin concentrations for non-invasive fetal trisomy 18 detection were 96.4% and 74.5%, respectively, with a sensitivity of 90.9%.ConclusionsOur results suggest that U-maspin and M-maspin concentrations may be useful as potential biomarkers for non-invasive detection of fetal trisomy 18 in the first trimester of pregnancy, irrespective of the sex and genetic variations of the fetus.