Honey is a natural product which owes its health benefits to its numerous bioactive compounds. The composition of honey is highly diverse and depends on the type of honey and its origin. Antioxidant capacity arises mainly from the total content of polyphenols and their composition. The aim of this study was to perform a multidimensional comparative analysis of phenolic compounds of honeys of various origins. Honeydew, buckwheat, manuka, Malaysian and goldenrod honeys had the highest antioxidant capacity (above 400 mg Trolox equivalents kg−1). These honeys were also characterized by the highest total polyphenol content (about 2500 mg gallic acid equivalents (GAE) kg−1) and the highest total flavonoid content (1400–1800 mg catechin equivalents (CAE) kg−1). Other honeys had much lower antioxidant properties. A multidimensional analysis of the profiles of phenolic compounds showed that honeys constitute a non-homogeneous data set and manuka honey was in contrast to other samples. Principal component analysis (PCA) (based on 18 phenolic compounds) distinguished honeys into five groups. Manuka, Malaysian and honeydew honeys created their own separate groups and the location of other honeys was variable. Ultra-high-performance liquid chromatography (UHPLC) analysis demonstrated that profiles of polyphenols in honeys were highly varied. Caffeic acid, datiscetin and rhamnetin were characteristic compounds for manuka honey. Quercetin, kaempferol and apigenin were present in all honeys except Malaysian honey. The antioxidant properties and the profiles of bioactive phenolic compounds of honeys were miscellaneous. The richest sources of polyphenols were local buckwheat and honeydew honeys, alongside exotic manuka and Malaysian honeys. These honeys could provide valuable ingredients to the human diet, helping to prevent diseases.
Read full abstract