In this article, a straightforward, intuitive method for lidar data classification and building extraction, based on statistical analysis, is presented. The classification of the point cloud into ground and nonground is begun by individually testing each point within the point cloud using the statistical mean height. In this operation, various window sizes are specified, and the mean is obtained at each size. The points that are above the mean are saved and divided by the number of windows to obtain the proportion. Points are considered non-ground if their proportion is higher than the assigned threshold, and otherwise ground. An algorithm for classifying the obtained nonground point cloud into buildings and trees is also illustrated in this article. First the nonground points are labeled, then each label is tested individually. The process begins with segmenting each label. Then comes testing of whether each segment of points can be fitted within a specific plane. The label of the point cloud is considered a building if the number of segments considered as planes is larger than those considered as nonplanes; otherwise it is classified as a tree.
Read full abstract