Multi-antenna receivers are a key technology for modern communication systems. Signal attenuation in the very low frequency (VLF) channel is a serious problem. In addition to high signal attenuation, the resulting noise on the VLF channel is non-Gaussian. Hence, to analyze and address the issue of the normal operation of the multi-antenna receiver in the VLF channel, we must study the signal detection problem in a multi-dimensional non-Gaussian fading channel. Motivated by the existing blind receiver in an underwater submarine single-antenna receiver, we study the signal detection and estimation algorithm under the fading channel for a multi-dimensional non-Gaussian noise model. In this study, we propose a blind receiver based on the expectation-maximization (EM) algorithm. The proposed blind receiver can reduce non-Gaussian noise. In addition, we propose a nonlinear receiver that can accurately receive the transmitted signal over the high-attenuation VLF communication systems. Numerical and simulation results over uncorrelated and correlated non-Gaussian channels confirm that the design of the proposed blind receiver is close to optimal, with low computation complexity.