Atmospheric pressure nonequilibrium plasma holds significant potential in biomedical applications due to its ability to generate reactive species at low temperatures. However, accurately quantifying and controlling plasma dosage remains challenging. Although equivalent total oxidation potential (ETOP) has been proposed for defining dosage, previous methods required measurement of various reactive oxygen and nitrogen species (RONS) densities, which are impractical in diverse plasma settings. Efficient ETOP prediction across variable conditions is thus essential. To address this, we propose a machine learning-based ETOP modeling method. This study collected RONS density data under various conditions using laser-induced fluorescence and trained an artificial neural network to predict ETOP values based on input parameters like voltage, gas flow rate, oxygen concentration, and humidity. This approach enables efficient ETOP prediction across variable conditions, supporting the standardization and clinical application of plasma medicine.
Read full abstract