Wearable, noninvasive sweat sensors enable real-time monitoring of metabolites in human health management. However, the commercial enzyme-based and currently nonenzymatic glucose sensor represents sluggish glucose oxidation kinetics and a narrow sensing range. Rational design of sensitive materials is significant yet faces a huge challenge. Herein, we construct a single-atom Pt supported on NiCo-LDH/Ti3C2Tx heterostructures (Pt1-NiCo-LDH/Ti3C2Tx) as the nonenzymatic electrochemical glucose sensor sensitive materials for selective detection of glucose level in human sweat. The obtained Pt1-NiCo-LDH/Ti3C2Tx with improved structural stability and enhanced charge transfer efficiency shows a low oxidation peak potential of 0.49 V, high sensitivity of 506.6 μA mM-1 cm-2, a low detection limit of 0.035 μM, and long-term stability toward the glucose detection. The wearable sensor, coupled with a wireless transmission module and a signal processing chip, is used for real-time perspiration glucose monitoring during outdoor exercise. The result is comparable to that of high-performance liquid chromatography (HPLC). This research provides a new paradigm for designing a wearable nonenzymatic electrochemical glucose sensor, enabling noninvasive real-time monitoring of glucose concentrations in human sweat.