Abstract
We report two-dimensional (2D) Ni/Co-based metal hydroxide-organic framework nanosheets (Ni/Co-MHOF NSs) for the construction of an efficient electrochemical nonenzymatic glucose sensor. The nanosheet architecture maximizes the exposure of coordinatively unsaturated metal sites, which enables a largely improved electrocatalytic performance toward the glucose oxidation reaction. The as-designed nonenzymatic sensor exhibits a high sensitivity of 235.71 μA·mM-1·cm-2 and a wide linear range of 1-3000 μM. The sensor presents excellent selectivity against several potential interferences and a short response time of 3.0 s. Of interest, a high-performance flexible sensor is developed by depositing the Ni/Co-MHOF NSs on screen-printed electrodes, which reveal decent bending stability. The designed glucose sensor patch can attach to the human body and realize noninvasive glucose monitoring in human sweat. This work may shed light on the application of novel MHOFs in the field of wearable electrochemical sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.