Abstract In control practices, problems of parametric or time-varying uncertainties must be dealt with. Robust control based on norm theory and convex and non-convex optimization algorithms is a powerful tool to solve these problems in theory, but it is employed rarely in applications. In most engineering cases, Proportional-Integration-Derivative (PID) control is still the most popular method for its easy-to-tune and controllable properties. The control method proposed in this paper integrates the PID control into robust control formulation as a robust Structured Static Output Feedback (SSOF) problem of Linear-Parameter-Varying (LPV) systems, which can be converted into a Parameter Dependent Bilinear-Matrix-Inequality (PDBMI) optimization problem. A convex-concave decomposition based method is given to solve the proposed PDBMI problem. The proposed solution has a simple structure in PID form and can guarantee stability and robustness of the system being controlled in the whole operation range with less conservativeness than existing solution.