Down-modulation of surface CXCR4, a G-protein-coupled receptor, in hematopoietic stem cells (HSCs) undergoing ex vivo expansion culturing is considered to be one of the major causes of marrow reconstitution failure, possibly due to an HSC homing defect. Recently, it has been reported that severe combined immunodeficiency (SCID)-repopulating cells (SRC) were expanded from the CD34-enriched human adult bone marrow (ABM) or cord blood (CB) hematopoietic stem cells (HSC) using a human brain endothelial cell (HUBEC) co-culture system. We found that primitive cord blood cells expressing surface CXCR4 (82+5%) lost this capability significantly during 7 days of ex vivo expansion in the HUBEC co-culture containing the cytokines stem cell factor (SCF), flt-3, interleukin (IL)-6, IL-3, and granulocyte macrophage colony stimulating factor (GM-CSF). Expression levels of other surface proteins relevant to HSC homing, such as CD49d, CD95, CD26, or CD11a, were not down-modulated. We hypothesized that CXCR4 down-regulation was caused by a receptor internalization and tested several methods to reverse CXCR4 internalization back to the surface, such as elimination of GM-CSF in the culture media, performing a non-contact culture using the transwell, or adding either 0.3Mor 0.4M sucrose, or 25μg/ml chlorpromazine (CPZ), 24 hours prior to the analysis. CPZ and sucrose are known inhibitors of the cytokine-induced endocytosis of CXCR4 in neutrophils (Bruhl H. et al. Eur J Immunol 2003). Interestingly, 0.4M sucrose showed approximately a 2-fold increase of surface CXCR4 expression on CB CD34+ cells by flow cytometry analysis. CPZ and 0.3M sucrose showed a moderate increase expression of CXCR4. Using a transwell HUBEC co-culture system, CXCR4 surface expression on CD34+ cells was down-regulated during the ex vivo culture. In vitro HSC migration test showed 3.1-fold increase in migration compared to the control after incubation of HSC with 0.1M sucrose for 16 hours prior to the in vitro migration study. Eliminating GM-CSF from the cytokine cocktail or adding MG132 increased migration 1.36- and 1.2-fold compared to the control. We are currently performing an in vivo homing assay using nonobese diabetic (NOD)-SCID mice. In conclusion, the HUBEC ex vivo culture system down-regulates surface CXCR4 in human cord blood HSC. The mechanism of CXCR4 surface down regulation may be receptor internalization by cytokines. Sucrose may be useful in attenuation of CXCR4 surface expression in CD34+ HSC by inhibition of receptor internalization via clathrin-coated pits.