Pulmonary gene delivery has demonstrated high specificity for respiratory diseases, offering great control on dosage of therapeutics and side effects. On the other hand, intrinsic barriers in pulmonary systems impose new challenges such as crossing the pulmonary surfactant and evading mucus entrapment. Differences in hydrophobicity of plasma membrane and pulmonary surfactant require different chemistries of gene carriers to improve efficacy. Large-scale coarse-grained (CG) molecular dynamics simulations would facilitate the screening of gene carriers and understanding of the molecular mechanisms involved in pulmonary delivery. Among non-viral carriers, polyethyleneimine (PEI) has been a promising candidate that can be synthesized with various molecular weight, degree of branching, and functionalization. In this work, CG models are developed for PEI and its lipid-functionalized form, within the Martini framework, to provide a platform for exploring structure-function relationships of PEI-based pulmonary delivery systems. Special attention is focused on parameterizing the non-bonded interactions associated with CG PEI, to ensure compatibility with Martini proteins, short interfering RNA, and phospholipids that are essential components in pulmonary gene delivery. The non-bonded parameters are validated by comparing all-atom (AA) and CG potential of mean force (PMF) curves, where the root-mean-square deviations between the AA and CG PMF curves are shown to be comparable to or smaller than those reported in Martini literature.
Read full abstract