Mashinostroenie, Moscow (1976). 5. S. K. Godunov, "Numerical solution of boundary-value problems for systems of linear ordinary differential equations," Usp. Mat. Nauk, 16, No. 3, 171-174 (1961). 6. Ya. M. Grigorenko, Isotropic and Anisotropie Shells of Revolution of Variable Stiffness [in Russian], Naukova Dumka, Kiev (1973). 7. Ya. M. Girgorenko and N. N. Kryukov, ~'Nons}-ametrical deformation of flexible circular layered orthotropic plates with variable stiffness parameters," Prikl. Mekh., 18, No. 3, 49-54 (1982). 8. Ya. M. Grigorenko, N. N. Kryukov, and T. G. Akhalaya, "Nonaxisymmetric deformation of flexible circular plates of variable stiffness," Prikl. Mekh., 15___, No. i0, 75-80 (1979). 9. Ya. M. Grigorenko, N. N. Kryukov, and V. S. Demyanchuk, "Deformation of flexible shells of revolution of variable stiffness," Dopey. Akad. Navuk UkrRSR, Ser. A, No. 4, 42-46 (1983). i0. V. V. Kabanov and V. D. Mikhailov, "Stability of a cylindrical shell under nonaxisymmetric loading," in: Transactions of the Twelfth All-Union Conference on the Theory of Plates and Shells, Vol. 2, Izd. Erevan. Un-ta, Erevan (1980), pp. 184-190. ii. B. Ya. Kantor, Nonlinear Problems of the Theory of Nonuniform Shallow Shells, Naukova Dumka, Kiev (1971). 12. V. V. Novozhilov, Principles of the Nonlinear Theory of Elasticity [in Russian], Gostekhizdat, Moscow (1948). 13. A. V. Karmishin, V. I. Myachenkov, V. A. Lyaskovets, and A. I, Frolov, Statics and Dynamics of Thin-Walled Shell Structures [in Russian], Mashinostroenie, Moscow (1975). 14. V. I. Feodos'ev,"Axisymmetric elastomer of a spherical shell," Prikl. Mat. Mekh., 33, No. 2, 280-286 (1969). 15. L.A. Shapovalov, "Simple variant of equations of the geometrically nonlinear theory of thin shells," Izv. Akad. Nauk.SSSR, Mekh. Tverd. Tela, No. i, 56-62 (1968).