This study presents the daily and seasonal variation of the atmospheric mixing layer height (MLH) over Gadanki, India (13.45°N, 79.18°E), a tropical rural location based on polarization lidar observations. The observations spanned the years 2009–2014, encompassing 303 instances, and coinciding with radiosonde and surface weather station measurements. The MLH was determined through the analysis of aerosol profiles and confirmed with the MLH values derived from radiosonde data. The lidar depolarization ratio was employed to characterize aerosol shape. This study aims to establish a connection between aerosol backscatter and its shape through lidar observations, considering diurnal and seasonal variations, while also identifying the influencing factors. This study illustrates four distinct case studies conducted during different seasons to depict aerosol behavior in both convectively active and non-active periods. These case studies unveil the influence of aerosol shape on water intake and subsequent residual layer and cloud formation. The observed fluctuations in MLH and aerosol shape suggest a dynamic relationship between local meteorology and long-range aerosol transport.
Read full abstract