Cement factories significantly contribute to atmospheric pollution by generating fine particulate matter (PM2.5), which can potentially increase the mortality risk. The lack of information on the health impacts of PM2.5 pollution from cement operations in Brazil prompted this investigation. We used corrected PM2.5 measurements from low-cost sensors from March 2021 to October 2022 in Rio Branco do Sul, city in the southern region of the country and home to Latin America's largest cement plant, to assess exposure data. Disability-adjusted life years (DALY) method was applied to estimate the years of life lost (YLL) and cost estimate due to deaths from non-accidental causes, cardiovascular and respiratory diseases. The total YLL attributable to PM2.5 concentration was estimated by calculating the attributable fraction (AF) through relative risk. We also collected PM2.5 using a Harvard impactor to evaluate health risks from toxic metals components. During the study period, the analysis of chemical characterization of PM2.5 showed enrichment factors for most elements and the possible influence of the calcination process facilities on the PM2.5 levels. The mean concentration of PM2.5 exceeded the annual WHO air quality guideline (AQG) level, accounted for 3.5%, 4.7%, and 4.3% of total YLL from all causes, cardiovascular, and respiratory diseases, which corresponded to 0.23 (95% CI: 0.17–0.26), 0.06 (95% CI: 0.05–0.07) and 0.03 (95% CI: 0.01–0.06) years loss in life expectancy, respectively. An indirect health cost attributable to PM2.5 resulted in US$ 1.4 million, equivalent to about 3.5% of the total local annual health costs in Rio Branco do Sul, underscoring the significant financial burden of PM2.5 exposures. The greatest economic loss was found in the male age group of 40–69 years and among those with cardiovascular disease, rather than those with respiratory disease. Despite this, the carcinogenic and non-carcinogenic risks from inhalation of hazardous elements were within safe ranges. This work demonstrated PurpleAir's potential for air quality and public health applications. Our findings indicate health and economic benefits from reducing PM2.5 levels by adopting WHO air pollution standards. The results can guide policies toward delivering more effective health care.
Read full abstract