The global urbanization trend is geographically manifested through city expansion and the renewal of internal urban structures and functions. Time-series urban land use (ULU) maps are vital for capturing dynamic land changes in the urbanization process, giving valuable insights into urban development and its environmental consequences. Recent studies have mapped ULU in some cities with a unified model, but ignored the regional differences among cities; and they generated ULU maps year by year, but ignored temporal correlations between years; thus, they could be weak in large-scale and long time-series ULU monitoring. Accordingly, we introduce an temporal-spatial-semantic collaborative (TSS) mapping framework to generating accurate ULU maps with considering regional differences and temporal correlations. Firstly, to support model training, a large-scale ULU sample dataset based on OpenStreetMap (OSM) and Sentinel-2 imagery is automatically constructed, providing a total number of 56,412 samples with a size of 512 × 512 which are divided into six sub-regions in China and used for training different classification models. Then, an urban land use mapping network (ULUNet) is proposed to recognize ULU. This model utilizes a primary and an auxiliary encoder to process noisy OSM samples and can enhance the model's robustness under noisy labels. Finally, taking the temporal correlations of ULU into consideration, the recognized ULU are optimized, whose boundaries are unified by a time-series co-segmentation, and whose categories are modified by a knowledge-data driven method. To verify the effectiveness of the proposed method, we consider all urban areas in China (254,566 km2), and produce a time-series China urban land use dataset (CULU) at a 10-m resolution, spanning from 2016 to 2022, with an overall accuracy of CULU is 82.42%. Through comparison, it can be found that CULU outperforms existing datasets such as EULUC-China and UFZ-31cities in data accuracies, spatial boundaries consistencies and land use transitions logicality. The results indicate that the proposed method and generated dataset can play important roles in land use change monitoring, ecological-environmental evolution analysis, and also sustainable city development.
Read full abstract