Abstract

Quantum computing has emerged as a powerful computational paradigm capable of solving problems beyond the reach of classical computers. However, today's quantum computers are noisy, posing challenges to obtaining accurate results. Here, we explore the impact of noise on quantum computing, focusing on the challenges in sampling bit strings from noisy quantum computers and the implications for optimization and machine learning. We formally quantify the sampling overhead to extract good samples from noisy quantum computers and relate it to the layer fidelity, a metric to determine the performance of noisy quantum processors. Further, we show how this allows us to use the conditional value at risk of noisy samples to determine provable bounds on noise-free expectation values. We discuss how to leverage these bounds for different algorithms and demonstrate our findings through experiments on real quantum computers involving up to 127 qubits. The results show strong alignment with theoretical predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.