The paper deals with the following Kirchhoff–Poisson systems: \t\t\t0.1{−(1+b∫R3|∇u|2dx)Δu+u+k(x)ϕu+λ|u|p−2u=h(x)|u|q−2u,x∈R3,−Δϕ=k(x)u2,x∈R3,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ \\textstyle\\begin{cases} - ( {1+b\\int _{{\\mathbb{R}}^{3}} { \\vert \\nabla u \\vert ^{2}\\,dx} } ) \\Delta u+u+k(x)\\phi u+\\lambda \\vert u \\vert ^{p-2}u=h(x) \\vert u \\vert ^{q-2}u, & x\\in {\\mathbb{R}}^{3}, \\\\ -\\Delta \\phi =k(x)u^{2}, & x\\in {\\mathbb{R}}^{3}, \\end{cases} $$\\end{document} where the functions k and h are nonnegative, 0le lambda , b; 2le ple 4< q<6. Via a constraint variational method combined with a quantitative lemma, some existence results on one least energy sign-changing solution with two nodal domains to the above systems are obtained. Moreover, the convergence property of u_{b} as b searrow 0 is established.
Read full abstract