The parametric resonance of a beam structure may lead to a disastrous consequence. To assess the safety of a structure, structural engineers need a straightforward and practical method to calculate the large-amplitude nonlinear parametric resonance responses of the beam structure. This paper proposes a newly developed vector form intrinsic finite element (VFIFE) calculation scheme to analyse the nonlinear parametric resonance of planar beam structures. By taking into account the geometric stiffness effect of the internal axial force for the frame element, a new relationship between internal nodal forces and deformation components is first established based on the VFIFE principle and the parametric resonance mechanism of frame structures. A numerical example of a portal frame is presented to demonstrate the efficacy of this new calculation scheme. A parametric resonance test of the cantilever beam is conducted to verify the applicability of the VFIFE method. The numerical results show that the proposed scheme can well simulate the nonlinear phenomena of parametric resonances. The numerical predictions are consistent with the experimental observations. A filtering-based finite-time Lyapunov exponent approach is presented to determine the stability boundary of the structure. The numerical stability boundary of parametric resonance agrees well with the experimental boundary. Possible causes of deviations between the numerical and experimental results are discussed. The proposed VFIFE scheme is a simple and effective means of analysing the stability and nonlinear responses of the parametric resonance of planar beam structures.
Read full abstract