Abstract

This paper proposes a correction method to accurately evaluate the nanoindentation load-depth (P-h) curve of MEMS double clamped micro bridge structures. Critical elastic and plastic deflections of the bent bridge are extracted from the overall elastic-plastic deflection, respectively. Through subtracting the elastic-plastic deflection of the micro bridge from the total displacement of the Berkovich indenter’s tip, the effect of constraint condition (double clamped) on the P-h curve of micro bridge is corrected. Nanoindentation P-h curves of routine and micro bridge C11000 Cu specimens are respectively obtained and compared with each other through both finite element analysis and experiments. Meanwhile, cross-sectional profiles along the symmetry axis of local indentation locations respectively obtained from the nodal deformations and scanned images of routine and micro bridge specimens are also compared and explained. Furthermore, a theoretical model is proposed to analyze the effect of the equivalent flow area induced by the elastic-plastic deflection on maximum indentation depth, the corrected values of Young’s modulus, maximum and residual depths of micro bridge specimens are essentially in agreement with that of routine fixed specimens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.