Since the memristor emerged as a programmable analog storage device, it has stimulated research on the design of analog/mixed-signal circuits with the memristor as the enabler of in-memory computation. Due to the difficulty in evaluating the circuit-level nonidealities of both memristors and CMOS devices, SPICE-accuracy simulation tools are necessary for perfecting the art of neuromorphic analog/mixed-signal circuit design. This article is dedicated to a native SPICE implementation of the memristor device models published in the open literature and develops case studies of applying such a circuit simulation with MOSFET models to study how device-level imperfections can make adversarial effects on the analog circuits that implement neuromorphic analog signal processing. Methods on memristor stamping in the framework of modified nodal analysis formulation are presented, and implementation results are reported. Furthermore, functional simulations on neuromorphic signal processing circuits including memristors and CMOS devices are carried out to validate the effectiveness of the native SPICE implementation of memristor models from the perspectives of simulation accuracy, efficiency, and convergence for large-scale simulation tasks.
Read full abstract