The models of the association between land use and air pollution have wide applications in urban studies, but the land-use role and its different parameters effective on the variability of air pollution concentration in various hours can be used for more accurate Spatio-temporal prediction of pollution. In this study, to make Spatio-temporal prediction of CO pollutants using hourly land-use regression (LUR), the effective parameters on Spatio-temporal variation of this pollutant are investigated during the day and night. The hourly data are collected from 21 air pollution monitoring stations for the summer in Tehran and the predictive parameters including density and distance from different variables such as road network, vegetation, elevation, and different land-use are generated in the geographic information system (GIS). A general model and 8 hourly models are created at 3 am, 6 am, 9 am, 12 noon, 3 pm, 6 pm and 12 midnight. The coefficient of determination (R2) of the created model is equal to 0.7898, and it shows that the model has an outstanding performance. By analyzing the generated hourly models, because of the differences in the parameters used in these models, it is denoted that both temporal variability and spatial variability play effective roles in forming the models during the day and night. The coefficient of determination (R2) of the hourly models ranges from 0.51 to 0.92 in which the lowest one and the highest one are related to the noon hours’ models and the nocturnal hours’ models, respectively. The parameters including local access roads and official/commercial areas have the most effect on increasing CO pollutants during the day and night, and the parameters including green space, sports, and medical centers lead to the locations with lower CO pollutants concentration.
Read full abstract