Single-unit recordings were made under moderate gaseous anaesthesia in the hindpaw representation area of the two primary somatosensory motor cortices (SmI) of rats (n = 58) rendered mononeuropathic by four loose ligatures placed around one common sciatic nerve 2-3 weeks beforehand. The rats exhibited clear hyperalgesia and allodynia from the paw with the ligated sciatic nerve, to both mechanical and thermal stimuli. From the tested neuronal population (n = 640), about the same proportion could be activated by somatic stimuli in each cortex: 165/362 (45%) in the cortex contralateral to the ligated sciatic nerve (Cc), 105/278 (37%) in the cortex ipsilateral to the ligated sciatic nerve (Ci). Neurones driven by light touch, exhibited RFs strictly contralateral to the recording sites. Their proportion and response characteristics were similar regardless of recording side. However, the number of neurones with RFs in the sciatic nerve territory was above 95% in the Ci, and was dramatically reduced to 43% in the Cc. By contrast, the number of neurones with RFs supplied by the saphenous nerve reached 57% on this side. Although the RF size of all the neurones appeared roughly normal, there were fewer Cc than Ci neurones with RFs located on the paw itself and with RFs of extremely small size in the sciatic nerve territory. The proportion of neurones responding to a joint stimulus was significantly higher in the Cc than in the Ci. The neuronal responses to joint stimuli of the paw with the ligated sciatic nerve were significantly more sustained than those recorded in the Ci and elicited from the normal paw. The proportion of neurones driven by mechanical stimulation which gave rise to nociceptive reactions in freely moving animals, i.e. "nociceptive" neurones, was comparable in each cortex. However, half of the Cc neurones exhibited paroxysmal discharges occurring without intentional stimulation and of long duration (1 min to several minutes). Only 66% of Cc but 93% of Ci "nociceptive" neurones were exclusively activated by pinch. The remaining Cc neurones were also activated by applying moderate pressure to the paw with the ligated nerve. Pinch responses from the paw with the ligated nerve were often more intense and of longer duration than responses elicited from the intact paw. The "nociceptive" Cc neurones were especially sensitive to thermal stimuli of 39-44 degrees C when the stimuli were applied to the paw with the ligated nerve. They also responded vigorously to a 10 degrees C stimulus applied to this paw.(ABSTRACT TRUNCATED AT 400 WORDS)