In this paper, an ultra-broadband perfect absorber based on a four-layer pyramid metamaterial and a metal insulator metal (MIM) structure has been demonstrated and investigated. Finite-difference time-domain (FDTD) results indicate that the absorption originates from localized surface plasmons and waveguide mode resonance effect. An average absorption of 96.18 % with bandwidth ranging from 308 nm to 2387 nm was achieved, and the average absorption in the entire wave band (200–2800 nm) was approximately 94.64%. The results of the impedance matching theory are consistent with the FDTD simulation. Polarization insensitivity was investigated by studying the absorption characteristic of TE and TM polarizations. The effect of top and bottom materials was investigated and compared in detail. Moreover, by adjusting the geometrical size, the absorption performance can be fine- tuned. In addition, the proposed broadband absorber exhibited excellent absorption stability and environmental refractive index tolerance. Without noble metal materials, the proposed structure can reduce the fabrication costs. We believe that the proposed broadband absorber has potential applications in solar cells, infrared imaging, and thermal emitters.