The rotating biological contactors combined with hybrid constructed wetlands (R-HCWs) has promising treatment performance, however, concerns persisted regarding greenhouse gases (GHGs) emissions. In this study, GHGs in the R-HCWs was evaluated, and results revealed that R-HCWs facilitated nitrogen conversion and provided alternating oxygen environments, thereby promoting the reduction of N2O and CH4 emissions. Therefore, the comprehensive global warming potential (8.7±2.7 g CO2-eq·m-3·d-1) for handling unit volume of river water was low, thus, greater ecological benefits were achieved. The relative abundance of functional microorganisms such as Bacillus, Acinetobacter, Nitrospira and norank_f__norank_o__SBR1031, increased due to warm season, which promoted the nitrogen cycle and N2O emission reduction. Anammox and denitrifying bacteria showed significantly correlated with N2O and CH4 emissions (p < 0.01). This study provides valuable insights for the potential adoption of biological and ecological integrated treatment approach optimized for improving water and mitigating GHGs emissions.
Read full abstract