Pd-promoted ZrO2 and WO3-ZrO2 (W-Zr) were investigated for low temperature NOx adsorption and release. Pd-promoted W-Zr exhibited high NOx storage efficiency at short storage times, subsequently releasing ∼95% of the stored NOx upon thermal ramping to 350 °C. DRIFTS studies demonstrated that Pd increased nitrate formation relative to nitrite during NOx storage on both Pd-Zr and Pd-W-Zr. Moreover, Pd sites on Pd-W-Zr played a major role in NOx storage, the ad-species being readily removed by 350 °C. From NO- and CO-DRIFTS data, it is inferred that Pd on the acidic W-Zr support was present as mainly cationic species, and was therefore able to adsorb NO, whereas on ZrO2 Pd was not able to directly store NOx. Co-feeding CO with NO resulted in increased NOx storage capacity for Pd-W-Zr, which on the basis of DRIFTS measurements is attributed to the formation of Pd2+(CO)(NO) complexes.
Read full abstract