The introduction of mobility shift reagents (SRs) into the buffer gas of mobility spectrometers yields SR-ion clusters that decrease ion mobilities and allow the separation of overlapping ions. With a large amount of papers on the introduction of SRs in ion mobility spectrometry (IMS) few investigations explain the behavior of the adducts of reactant ions with SRs and it is not clear what type of peaks to expect which obscures the interpretation of spectra. Electrospray-ionization IMS was coupled to quadrupole mass spectrometry, and 2-butanol (B), ethyl lactate (L), and methanol were introduced as SRs into the buffer gas. The hybrid functional X3LYP/6–311++(d,p) with Gaussian 09 was used for theoretical calculations of SR-ion interaction energies. Adducts of the reactant ions with B and L presented different behaviors; even at low flow rates, L consumed all sodium, reactant ions, and water by adduction, because a) in the experimental conditions, SRs were more concentrated in the buffer gas than reactant ions, b) L’s high proton affinity and c) L’s three electron-donor oxygens, increases adduction. Therefore, chemical equilibria in the buffer gas were only between L and LnH+, LmH3O+, or LxNa+ adducts and, consequently, these sets of adducts had different mobilities. The lower mobility of LmH3O+ compared to LnH+ was explained on the base of the lower steric hindrance in LH3O+ for attachment of L molecules. The behavior of reactant ions with B was different: BnH3O+ and BnH+ overlapped because the relatively low proton affinity and the single and weaker interaction site in B allowed protons and water to be exchanged between species. Finally, L4H+, L4H3O+, B4H+ and B5H+ ions, not reported before, were seen for large SR concentrations. This study explains two different behaviors of the adducts of SRs with reactant ions using interaction energies, proton affinities, steric hindrance, and the number of locations for adduction.
Read full abstract