The regulatory role that mitochondria play in cell dysfunction and cell-death pathways involves the concept of a complex and multisite regulation of cellular respiration and energy production signaled by cellular and intercellular messengers. Hence, the role of nitric oxide, as a physiological regulator acting directly on the mitochondrial respiratory chain acquires further relevance. This article provides a survey of the major regulatory roles of nitric oxide on mitochondrial functions as an expression of two major metabolic pathways for nitric oxide consumption: a reductive pathway, involving mitochondrial ubiquinol and yielding nitroxyl anion and an oxidative pathway involving superoxide anion and yielding peroxynitrite. The modulation of the decay pathways for nitrogen-and oxygen-centered radicals is further analyzed as a function of the redox transitions of mitochondrial ubiquinol. The interplay among these redox processes and its implications for mitochondrial function is discussed in terms of the mitochondrial steady-state levels (and gradients) of nitric oxide and superoxide anion.